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1. Problem:	
Traditionally,	 fixed-point	 detectors	 such	 as	 loop	 detectors	 have	 been	 the	 dominant	 technology	 for	
collecting	traffic	flow	data.	Fixed	point	sensors,	by	definition,	only	collect	data	at	the	specific	 locations	
they	are	installed.	On	the	other	hand,	vehicle	tracking	and	localization	technologies,	such	as	GPS,	enable	
measuring	traffic	flow	characteristics	along	the	paths	of	so	called	probe	vehicles.	Obviously,	tracking	a	
GPS-equipped	mobile	consumer	device(s)	within	the	vehicle	also	enables	generating	similar	data.	Data	
from	these	sources	have	been	used	in	studying	traffic	flow	phenomena	[1-3].	Mobile	sensors	provide	more	
diverse	information	compared	to	fixed	location	detectors	as	they	are	not	limited	to	certain	data	collection	
locations.	With	the	emergence	of	autonomous	vehicles,	it	is	now	possible	to	expect	another	source	data	
that	would	become	commonly	available	as	these	enter	the	consumer	market.	Autonomous	vehicles	are	
typically	equipped	with	LIDAR	or	other	similar	sensors	to	detect	and	track	obstacles	in	the	surrounding	
environment.	LIDAR	also	provides	a	means	to	detect	and	track	other	vehicles	around	the	autonomous	car.	
There	is	very	limited	research	on	how	data	from	such	vehicles	could	be	utilized	to	estimate	traffic	flow	
parameters.	In	this	project,	3D	point	clouds	data	from	a	LIDAR	installed	on	a	vehicle	are	used	for	extracting	
information	relevant	for	modeling	traffic	flow.	Such	data	are	very	rich	and	have	the	advantage	of	defining	
the	environment	in	more	detail	but	also	require	fast	processing	methods	due	to	large	size	of	the	data.	This	
report	 discusses	 LDIAR	 data	 collection	 and	 processing	 to	 estimate	 micro	 and	 macro	 traffic	 flow	
parameters.		

2. Approach	and	Research	Objectives:	
The	main	goal	of	this	study	is	to	estimate	traffic	flow	parameters	with	the	help	of	LIDAR.	The	specific	goals	
and	the	approach	of	the	proposed	research	are:	

1. Collect	sample	LIDAR	data	under	different	traffic	conditions	on	freeways	and	urban	arterials	 in	
Hampton	Roads	

2. Develop	algorithms	to	detect	vehicles	around	a	LIDAR-equipped	car	and	classify	them	based	on	
vehicle	size.	

3. Develop	algorithms	to	track	other	vehicles	while	within	the	LIDAR	range		
4. Estimate	macroscopic	traffic	flow	parameters	based	on	the	detected	vehicles	along	the	path	of	

the	LIDAR-equipped	vehicle		

3. Introduction:	
Environment	detection	is	one	of	the	key	aspect	of	autonomous	driving	technologies.	Detecting	obstacles	
around	the	autonomous	vehicle,	such	as	moving	or	parked	cars,	pedestrians,	trees,	curbs	etc.,	accurately	
and	 reliably	 is	 a	 challenge.	 To	 accomplish	 that,	 autonomous	 driving	 systems	 use	 sensor	 and	 camera	
systems	to	successfully	navigate	while	avoiding	obstacles.	LIDARs	have	become	an	important	part	of	these	
driving	systems.	LIDAR	is	a	remote	sensing	technology	that	measures	distance	to	a	target	by	sending	laser	
beams	and	measuring	returned	beams.	LIDARs	provide	rich	spatial	 information	about	the	environment	
surrounding	the	sensor.	In	this	project,	3D	Velodyne	VLP-16	LIDAR	sensor	is	used	[4].	This	sensor	has	16	
laser	beams	with	different	pitch	angles,	in	2	degrees	increment,	on	a	360-degree	rotating	unit.	Figure	1.	
below	illustrates	a	VLP-16	sensor	and	the	orientation	of	the	16	laser	beams	(see	also	Table	1).		
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Figure	1.	LIDAR	and	laser	structure	

The	 unit	 allows	 observing	 360-degree	 horizontal	 and	 30-degree	 vertical	 field	 of	 view	 producing	
approximately	30,000	points	in	a	single	scan.	It	can	detect	targets	up	to	100m	away	within	a	circle	field	of	
detection.	Its	rotation	frequency	can	be	adjusted	between	5	to	20	Hz.	In	this	project,	it	is	used	at	10	Hz	
which	means	 a	 snapshot	 of	 the	 environment	 is	 taken	 in	 every	 0.1	 seconds.	 In	 this	 project,	 data	 are	
collected	on	urban	roads	with	a	Velodyne	VLP-16	sensor.			

Table	1.	LIDAR	laser	vertical	angles	
Laser	ID	 Vertical	angle	
0	 -15	

1	 1	
2	 -13	
3	 -3	
4	 -11	

5	 5	
6	 -9	
7	 7	
8	 -7	

9	 9	
10	 -5	
11	 11	
12	 -3	

13	 13	
14	 -1	
15	 15	

	

An	illustration	of	the	3D	LIDAR	data	is	in	Figure	2.	It	provides	detailed	information	about	surrounding	of	
the	vehicle.	Different	colors	designate	different	 intensity	 levels	which	 increase	with	reflective	surfaces	
such	as	metals.		
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Figure	2.	LIDAR	data	points	near	an	intersection	

4. Methodology:	
The	methodology	in	this	project	can	be	divided	into	two	major	parts:	(i)	Data	Collection	and	Processing	
and	(ii)	Data	Analysis.	These	are	discussed	next.		

Data Collection and Processing:  
Data	collection	part	is	accomplished	by	mounting	the	3D	LIDAR	on	a	sedan	vehicle	and	making	multiple	
trips	under	different	traffic	conditions.		

	
Figure	3.	Data	processing	steps	

The	data	processing	step	starts	with	each	new	LIDAR	scan	and	repeats	for	every	new	LIDAR	scan.	Every	
LIDAR	scan,	which	is	also	called	a	frame,	is	recorded	with	10Hz	frequency.	This	gives	10	LIDAR	frames	for	
every	second.	LIDAR	points	go	through	the	“Classification”	section	where	vehicles	are	detected.	Then,	this	
detected	vehicle	information	is	sent	to	the	“Tracking	&	Data	association”	section	where	measurements	
are	related	to	the	previous	measurements	and	tracking	(relating	to	the	previous	measurements)	is	done.	
In	 this	 part,	 Kalman	 Filtering	 is	 used	 to	 track	 targets	 and	 data	 association	 is	 done	 with	 Hungarian	
Algorithm.	Output	 of	 the	 “Tracking	&	Data	 association”	 step	 produces	 vehicle	 trajectory	 information.	
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Trajectory	data	collection	is	crucial	as	it	prepares	the	basis	data	for	the	micro	&	macro	traffic	analysis	part	
of	the	project.			

Data Analysis:  
In	this	part,	we	use	the	data	collected	in	the	previous	step	and	investigate	micro-macro	traffic	parameters.	
Making	trips	on	different	types	of	roads	under	different	conditions	helped	us	getting	a	diverse	dataset	
that	provides	wide	range	of	traffic	situations	such	as	stop-go,	heavy	and	free-flow	traffic.	Data	analysis	
part	 is	 divided	 into	 two	 sections:	 “Microscopic”	 Traffic	 Study	 and	 “Macroscopic”	 Traffic	 Study.	 In	
“Microscopic”	 part,	 we	 studied	 microscopic	 traffic	 phenomena	 which	 mostly	 includes	 car-following	
models.	Collected	data	is	used	to	calibrate	different	car	following	models:	Gipps,	IDM,	Newell	and	Pipe’s.	
These	models	provide	information	about	driving	behavior.	In	“Macroscopic”	study	part,	NGSIM	dataset	is	
used	 to	 create	a	model	 for	estimating	number	of	 vehicles	between	probe	vehicles	under	 stop-and-go	
conditions.	 Unsupervised	 and	 supervised	methods	 are	 developed	 and	 used	 to	 estimate	 the	 unknown	
number	of	vehicles	between	probes	and	then	it	 is	used	to	calculate	the	macroscopic	traffic	parameter	
traffic	density.	As	a	future	work,	this	work	will	be	extended	to	include	LIDAR	data	in	addition	to	the	NGSIM	
data	in	the	estimation	methods.		

5. Research	Findings:	
In	this	section,	we	explain	developed	algorithms	and	methods	to	address	our	research	objectives.		

Data Collection: 
Our	3D	Velodyne	LIDAR	is	mounted	on	the	roof	of	our	vehicle	and	3D	LIDAR	data	is	collected.	We	drove	
LIDAR	equipped	vehicles	in	different	traffic	conditions	on	urban	roads	and	highways	in	Hampton	Roads	
Region	in	Virginia.	Below	in	Figure	4,	our	data	collection	vehicle	can	be	seen.		

	
Figure	4.	Our	vehicle	with	LIDAR	is	marked	with	red	circle	
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Hampton	Roads	area	provides	rich	traffic	information	as	it	includes	various	types	of	infrastructures	such	
as	bridges	and	tunnels.	LIDAR	data	is	collected	with	multiple	trips	on	different	routes	to	capture	diverse	
driving	conditions.	These	routes	are	marked	with	blue	in	Figure	5.			

	
Figure	5.	Data	collection	routes	

Vehicle Classification: 
Vehicle	classification	consists	of	two	parts:	Ground	detection	and	target	classification.	Ground	detection	
and	 target	 detection	 are	 closely	 related.	 Data	 coming	 from	 3D	 LIDAR	 is	 first	 processed	 for	 ground	
detection	and	then	for	target	or	obstacle	detection	and	classification.	In	ground	detection,	ground	points	
are	detected	and	removed	from	the	complete	set	of	points.	Then	target	detection-classification	is	applied	
on	the	remaining	points.		

Ground Detection: 
One	of	 the	challenges	dealing	with	LIDAR	data	 is	distinguishing	ground	points	 from	other	points.	Data	
coming	from	3D	LIDAR	is	first	processed	for	ground	detection.	Many	methods	in	the	literature	assumes	a	
flat	ground	surface	and	simply	applies	a	height	threshold	[5-7].	This	causes	problems	in	some	different	
situations	where	the	road	is	not	flat.	We	show	an	example	of	that	situation	from	our	LIDAR	data	in	Figure	
6.	As	shown	in	Figure	6	(right),	roads	and	their	cross	sections	are	not	completely	flat,	and	they	may	be	
curved.	In	[8,	9],	ground	points	are	calculated	by	fitting	a	plane	using	RANSAC	algorithm.	This	method	has	
the	assumption	that	ground	needs	to	be	planar	and	has	limitations	if	the	road	has	curves	or	slope	on	one	
side.	In	[10],	authors	proposed	a	grid	(cell)	based	method	where	ground	is	detected	using	average	and	
variance	 of	 heights	 falling	 into	 each	 cell.	We	 applied	 an	 approach	 similar	 to	 the	method	 in	 [10]	 and	
developed	a	simple	rule-based	method	to	identify	ground	points	accurately.	Advantage	of	our	method	is	
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that	we	investigate	each	point	in	a	grid	cell	separately	because	each	cell	may	contain	both	ground	and	
non-ground	points.		

	
Figure	6.	Lidar	scan	projected	into	2D	space.	On	the	left	projection	to	x,	y	axis	and	right	to	x,	z	axis.				

We	defined	a	region	of	interest	of	40	meters	long	and	13	meters	wide	and	vehicle	detection-classification	
is	done	in	this	field.	3D	LIDAR	scan	is	projected	onto	x-y	space	and	discretized	into	0.25x0.25	meters	grid	
cells	which	creates	a	grid	with	52x160	cells.	Minimum	height	in	each	cell	was	found,	and	any	point	with	a	
height	less	than	the	minimum	height	in	the	cell	plus	a	constant	(α)	is	considered	to	belong	to	the	ground.	
This	 condition	 is	 only	 applied	where	 the	minimum	 height	 in	 the	 cell	 is	 less	 than	 a	 constant	 (β).	 This	
procedure	is	applied	on	each	cell.	The	result	of	this	method	on	the	same	LIDAR	scan	in	Figure	6	is	given	
below	in	Figure	7.	The	red	colors	show	the	detected	ground.		

	
Figure	7.	A	sample	result	of	ground	detection	

	This	ground	detection	algorithm	can	be	expressed	as:	

	 𝑝" = 				𝑔𝑟𝑜𝑢𝑛𝑑,									ℎ𝑒𝑖𝑔ℎ𝑡 𝑝" < min ℎ𝑒𝑖𝑔ℎ𝑡 𝑐𝑒𝑙𝑙 𝑖, 𝑗 + 𝛼 𝑎𝑛𝑑	min ℎ𝑒𝑖𝑔ℎ𝑡 𝑐𝑒𝑙𝑙 𝑖, 𝑗 < 𝛽	
𝑛𝑜𝑛 − 𝑔𝑟𝑜𝑢𝑛𝑑, 𝑒𝑙𝑠𝑒	

	 (1)	
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where	pk	is	the	point	in	cell[i,j]	of	location	i,j	where	1≤i≤n	and	1≤i≤m.		α	is	ground	height	threshold	and	β	
is	corrective	height	threshold	to	make	sure	parts	of	the	vehicle	is	not	considered	as	ground.	m,	n,	α	and	β	
are	selected	as	160,	52,	0.25	and	-1.35	respectively.	Our	proposed	method	allows	differentiation	between	
points	 in	 each	 cell.	 This	 ground	 detection	 algorithm	 is	 applied	 on	 125	 hand-labeled	 LIDAR	 scans	 and	
resulted	in	satisfactory	results	in	terms	of	precision	and	recall	measures.	Precision	gives	a	measure	of	how	
many	of	the	selected	points	are	relevant	and	recall	shows	how	many	of	the	relevant	points	are	successfully	
selected.		

	 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
	 (2)	

	 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
	 (3)	

	

Table	2.	Precision	and	accuracy	of	ground	detection	

Precision	 Recall	
0.975	 0.99	

	

Target Detection and Classification: 
After	 ground	 points	 are	 filtered	 out,	 the	 remaining	 sparse	 points	 belong	 to	 vehicles.	We	 proposed	 a	
method	to	classify	vehicles	based	on	their	dimensions.	The	collected	3D	LIDAR	data	contains	both	trucks	
and	passenger	cars.	In	this	research,	a	simple	technique	is	applied	to	detect	large	trucks	(e.g.,	FHWA	Class	
9)	 and	more	 comprehensive	 vehicle	 classification	 is	 left	 for	 future	 research.	 Therefore,	 we	 classified	
detected	vehicles	as	either	a	truck	or	a	car.	There	are	two	main	challenges	to	be	addressed.		

1- Clustering:	 3D	 LIDAR	 points	 are	 sparse	 and	 points	 that	 belong	 to	 the	 same	 vehicle	 should	 be	
grouped	together.	

2- Unknown	number	of	 clusters:	Due	 to	 the	dynamic	nature	of	 traffic,	 number	of	vehicles	 in	 the	
region	of	interest	is	unknown.	

Density-based	 spatial	 clustering	 of	 applications	with	 noise	 (DBSCAN)	 algorithm	 is	 used	 to	 solve	 these	
problems	[11].	It	groups	together	points	that	are	near	each	other.	It	can	also	identify	points	whose	nearest	
neighbors	 are	 too	 far	 away	 and	mark	 them	 as	 noise.	 DBSCAN	 is	 one	 of	 the	most	 cited	 and	 popular	
clustering	algorithm	in	the	scientific	literature.		
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Figure	8.	A	sample	result	of	clustering	of	cars	and	a	truck	with	DBSCAN	

This	 algorithm	consists	of	 two	parameters.	 The	 first	one	 is	 epsilon	which	 is	 the	diameter	of	 the	 circle	
around	any	point	called	the	neighborhood.	The	second	one	is	the	minimum	number	of	points	which	can	
be	 considered	 as	 a	 cluster.	 For	 this	 study,	 the	 diameter	 is	 selected	 as	 1.5	meters,	 and	 the	minimum	
number	of	points	is	set	to	be	10	points.	Figure	8	shows	how	the	algorithm	identified	all	clusters	accurately.	
After	this	point,	it	is	straight	forward	to	distinguish	between	trucks	and	regular	vehicles	by	looking	at	X-Z	
profile	of	each	cluster.	If	the	range	of	height	in	a	cluster	is	more	than	2	meters,	it	is	classified	as	a	truck.	
In	Figure	8,	cluster	#1	(the	red	large	cluster)	is	a	truck,	whereas	all	other	clusters	(cluster	#	2-8)	are	cars.		

All	in	all,	we	employed	a	two-step	vehicle	classification	method.	The	first	step	removes	ground	points	
and	second	step	creates	clusters	and	classifies	them.	Vehicle	classification	is	important	because	different	
types	of	vehicles	have	different	traffic	characteristics.	Clusters	from	this	part	will	be	used	for	tracking	in	
the	next	part	of	the	project	and	trajectories	of	the	vehicles	will	be	recorded,	knowing	which	trajectory	
belonging	to	which	type	will	be	useful	in	the	analysis.	

Target Tracking: 
Target	tracking	 is	an	essential	part	of	our	project.	 It	allows	to	record	vehicle	trajectories	and	add	new	
measurements	 to	 the	 existing	 trajectories.	 In	 this	 project,	 we	 used	 Kalman	 Filtering	 tracking	 with	
Hungarian	Method	for	data	association.	

v Kalman	filtering	for	tracking:	

Kalman	Filter	has	been	a	widely	used	method	for	guidance,	control	and	tracking	of	vehicles	[13,	14].	It	
consists	of	two	parts:	“Prediction”	and	“Update”	[12].	Prediction	part	uses	previous	state	for	the	current	
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state	prediction.	It	doesn’t	include	any	observation	information,	so	it	is	called	“a	priory”	estimate.	In	the	
update	part,	current	estimate	is	updated	using	the	current	observation,	therefore,	it	is	called	“a	posteriori”	
estimate.	

State	“s”	at	time	“k”	calculated	by	multiplying	state	transition	model	“F”	at	time	“k”	by	state	“s”	at	time	
“k-1”	and	adding	process	noise	“w”	at	time	“k”.		

	 1k k k ks F s w-= + 	 (4)	

where	process	noise	wk	is	drawn	from	N(0,	Qk)	with	zero	mean	and	covariance	Qk	

Observation	“z”	at	time	“k”	is	calculated	by	multiplying	state	“s”	at	time	“k”	by	observation	model	“H”	at	
time	“k”	and	adding	observation	noise	“v”	at	time	“k”.			

	 k k k kz H s v= + 	 (5)	

where	observation	noise	vk	is	drawn	from	N(0,	Rk)	with	zero	mean	and	covariance	Rk	

“Prediction”	step:	

System	state	is	predicted	by		

	 / 1 1/ 1ˆ ˆk k k k ks F s- - -= 	 (6)	

Error	covariance	matrix	is	predicted	by	

	 / 1 1/ 1
T

k k k k k k kP F P F Q- - -= + 	 (7)	

where	“P”	denotes	covariance	matrix	which	yields	how	accurate	the	state	estimation	is.		

“Update”	step:	

Measurement	innovation	residual:		

	 / 1ˆk k k k ky z H s -= -! 	 (8)	

	

Innovation	covariance:	

	 / 1
T

k k k k k kC R H P H-= + 	 (9)	

Optimal	Kalman	gain:	

	 1
/ 1

T
k k k k kK P H C -

-= 	 (10)	

Updated	state	estimate:	

	 / / 1ˆ ˆk k k k k kx x K y-= + ! 	 (11)	

Updated	estimate	covariance:	
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	 / / 1( )k k k k k kP I K H P -= - 	 (12)	

In	 applying	 this	 filter	 to	our	problem	of	object	 tracking,	we	use	data	projected	onto	a	2D-space	 (x,y).	
Therefore,	state	s	is	given	by	[x,	y]T	where	x	is	x	coordinate,	y	is	y	coordinate.	Observation	z	is	the	tracked	
object’s	measured	location	given	by	[x,	y]T	

	

v Multi-target	tracking	with	Hungarian	method:	

Frame	matching	is	an	important	problem	in	target	tracking.	Once	objects	are	detected	and	registered	in	
a	scene,	next	scene	will	provide	new	observations	(objects).	We	need	to	determine	which	observed	object	
in	a	new	scene	correspond	to	which	object	in	the	previous	scene	(see	Figure	9).		

	
Figure	9.	Data	association	problem	

Hungarian	method	helps	 solve	 the	assignment	problem	 [15].	 It	 seeks	 to	minimize	a	 global	 cost	 in	 the	
assignment	problem.	In	our	case,	we	can	construct	the	cost	matrix	with	Euclidian	distances	between	last	
saved	 tracks	 and	 new	 measurements.	 Cost	 function	 for	 n	 number	 of	 tracks	 and	 m	 number	 of	
measurements	is	below	

	 𝐶C,D =

𝐶E,E 𝐶E,F 𝐶E,G 𝐶E,H 𝐶E,I 𝐶E,J 𝐶E,K 𝐶E,L
𝐶F,E 𝐶F,F 𝐶F,G 𝐶F,H 𝐶F,I 𝐶F,J 𝐶F,K 𝐶F,L
𝐶G,E 𝐶G,F 𝐶G,G 𝐶G,H 𝐶G,I 𝐶G,J 𝐶G,K 𝐶G,L
𝐶H,E 𝐶H,F 𝐶H,G 𝐶H,H 𝐶H,I 𝐶H,J 𝐶H,K 𝐶H,L
𝐶M,E 𝐶M,F 𝐶M,G 𝐶M,H 𝐶M,I 𝐶M,J 𝐶M,K 𝐶M,L

	 (13)	

		

where	i	and	j	are	ith	track	and	jth	measurement	respectively	and	0<i<n	and	0<j<m	

In	the	data	association	part,	we	try	to	pair	measurements	and	tracks	in	the	best	way	such	that	it	minimizes	
the	global	cost	for	a	given	assignment	matrix	Asi,j	ϵ	{0,1}	and	cost	function	Ci,j	

This	can	be	written	as:	
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As

=

=å 	and	Asi,j	=	0	if	and	only	if	Ci,j	>	r	where	r	is	distance	threshold	

Tracking	results	for	512	LIDAR	scans	or	frames	are	given	Figure	10	and	11	below.	Vehicles	travelling	only	
in	the	same	direction	as	our	LIDAR-equipped	vehicles	are	considered	(forward	direction).	Data	collection	
is	from	a	two-lane	urban	road	near	Old	Dominion	University	campus	and	11	vehicles	are	tracked	along	
our	data	collection	path.	In	Figures	10	and	11,	vertical	axis	shows	the	distance	between	data	collection	
vehicle	and	 target	 vehicles	 in	 the	direction	of	movement.	Horizontal	 axis	 shows	 the	 frame	number	at	
which	the	LIDAR	recorded	the	vehicles.	Our	LIDAR	was	used	in	10	Hz	frequency	which	means	it	recorded	
10	frames	per	second.		

	

Figure	10.	Vehicle	trajectories	for	lane1	

Figure	10	shows	vehicle	trajectories	for	lane	1	which	is	the	same	lane	as	our	data	collecting	vehicle	and	it	
is	left	lane.	Figure	11	below	shows	the	second	lane	which	is	the	right	lane.		

	

Figure	11.	Vehicle	trajectories	for	lane	2	
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We	can	see	our	proposed	methods	are	able	to	construct	vehicle	trajectories	around	our	data	collection	
vehicle	by	using	their	detection	location	and	our	speed	information.	Vehicle	trajectories	provide	valuable	
information	about	traffic	and	our	methods	proved	to	be	successful	in	creating	vehicle	trajectories	from	
3D	LIDAR	point	cloud	data.		

Microscopic and Macroscopic Traffic Parameters 
One	of	the	important	goals	of	the	project	is	to	capture	micro	and	macro	states	of	the	traffic.	As	the	vehicle	
with	 LIDAR	 is	moving	within	 the	 traffic,	 it	 can	 capture	 and	 save	 the	 current	 traffic	 state	 by	 detecting	
vehicles	 around	 it.	 Below,	we	 first	 present	 how	 LIDAR	data	 could	 be	 used	 to	 construct	 and	 complete	
vehicle	trajectories	when	there	is	missing	observations.		After	that,	we	discuss	how	trajectory	data	from	
a	sample	of	vehicles	could	be	used	estimate	traffic	density.		

Constructing Vehicle Trajectories: 
In	this	section,	car	following	theories	are	used	to	generate	complete	trajectories	and	address	potential	
missing	data	problems.	Additional	details	about	this	method	can	be	found	in	[16].	Trajectories	collected	
with	3D	Lidars	may	have	gaps	or	missing	points	due	to	range	limitations	of	the	sensor	where	targets	may	
go	 out	 of	 range	 and	 enter	 again.	 Microscopic	 traffic	 models	 are	 utilized	 to	 solve	 this	 problem.	 We	
calibrated	 four	different	car	 following	models	and	 fill	missing	 trajectory	data	using	 the	best	calibrated	
models	for	each	gap	in	the	data.	

v Data:	

We	used	our	collected	3D	LIDAR	data	as	well	as	NGSIM	data	to	develop	and	test	our	methods.	This	way,	
we	show	that	our	model	works	for	data	from	various	sources	and	collected	with	different	technologies.	

LIDAR	data	acquisition	and	processing:	

LIDAR	data	is	collected	at	various	traffic	conditions	with	a	platform	consists	of	LIDAR	(VLP-16),	GPS	and	
dash	camera.	Detected	vehicle	is	considered	as	the	leader	vehicle	and	our	vehicle	is	the	follower	vehicle	
for	each	trajectory	pair.	Some	manual	work	is	applied	by	looking	at	dash	cam	records	to	verify	that	lane	
change	did	not	occur	and	the	same	car	was	followed	for	each	trajectory.		

NGSIM:	

We	 also	 included	 NGSIM	 I-80	 dataset	 [17]	 to	 test	 our	 missing	 data	 recovery	 model.	 NGSIM	 dataset	
includes	an	area	about	500	meters	long	and	6	lanes	on	eastbound	Interstate	80	in	Emeryville,	CA.	in	2005.	
This	dataset	has	served	as	an	important	benchmark	dataset	in	traffic	theory	research.	It	consists	of	three	
parts	each	15-minute	long.	We	used	the	first	15	min	part	and	used	vehicle	trajectories	that	are	at	least	50	
seconds	long	without	lane	change	and	not	on	leftmost	(HOV)	and	rightmost	(ramp)	lanes.		

v Approach:	

Complete	 LIDAR	 trajectories	 collected	with	 the	data	 collection	methods	mentioned	 in	 this	 report	 and	
NGSIM	trajectory	data	are	used	 to	 test	our	method.	Random	gaps	are	created	deliberately	within	 the	
trajectories	which	are	then	recovered	by	the	algorithms.	We	assumed	that	driving	behavior	stays	the	same	
for	5	seconds,	and	gaps	that	occur	for	less	than	5	seconds	can	be	recovered	with	linear	interpolation.	Gaps	
longer	than	5	seconds	need	more	complicated	solutions.	We	used	our	method	to	recover	those	gaps	that	
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are	more	than	5	seconds	long.	Our	method	makes	use	of	microscopic	car	following	models	for	calibration	
of	vehicle	trajectories.	These	car	 following	models	help	capturing	driving	behavior	and	 leader-follower	
vehicle	 interactions.	We	 calibrated	 different	 car	 following	models	 using	 vehicle	 trajectories	 from	 our	
LIDAR	data	and	NGSIM.	Calibrated	 trajectories	are	 compared	with	 the	actual	 trajectory	values	 for	 the	
random	created	gaps.	Later,	we	introduced	an	approach	which	we	call	“smooth	transition	algorithm”	to	
fix	un-matched	trajectory	end	points	with	smooth	transition	along	the	gap.		

v Car	following	models:	

Car	 following	models	reside	 in	microscopic	traffic	models	and	they	use	microscopic	properties	such	as	
velocity,	 acceleration,	 deceleration	 and	 position.	 In	 this	 project,	we	 studied	Gipps’,	 Intelligent	Driving	
Model,	Pipe’s	and	Newell’s	car	following	models	[18].	Brief	background	about	these	models	are	provided	
below.	

Gipps’	 model	 uses	 reaction	 time	 and	 safety	 parameters	 such	 as	 “safe	 speed”	 and	 “safe	 distance”	
parameters	to	make	sure	collision	is	avoided.	Its	formula	is	given	by	

	 0 safe( ) min( , , ( , ))lv t t v a t v v s v+D = + D 	 (15)	

	 0 safev = min(v , v ) 	 (16)	

	 2 2 2
0 0v  = min(v , -b t + b 2 ( ))t v b s sD D + + - 	 (17)	

where	v:	speed,	v0:	desired	speed,	vsafe:	safe	speed,	b:	deceleration,	Δt:	reaction	time,	s:	distance	and	s0:	
minimum	distance.					 	 	 	 	 	 	 	 	

The	 Intelligent	Driver	Model	 (IDM)	 uses	 a	 smooth	 acceleration	 and	deceleration	 policy	 and	 a	 smooth	
transition	between	them	[19].	It	is	given	by	

	
( ) 2*.

0

,
v 1

s v vva
v s

dé ùæ öDæ öê ú= - -ç ÷ç ÷ ç ÷ê úè ø è øë û
	 (18)	

with	the	parameters	speed	v,	speed	change	Δv,	desired	speed	v0,	acceleration	exponent	δ,	acceleration	a	
and	desired	distance	s*	and	current	distance	s.	Desired	distance	is	given	by	

	 ( )*
0, max(0, )

2
v vs v v s vT
ab
D

D = + + 	 (19)	

where	s0:	minimum	distance,	T:	time	gap,	a:	acceleration	and	b:	deceleration.	This	term	allows	intelligent	
following	distance.	 	

Pipe’s	Model	uses	a	“safe	distance”	of	at	least	the	length	of	a	car	for	every	ten	miles	per	hour	between	
vehicle	pairs	[20].	It	is	given	by	 	

	 min( ) ( 1) ( ) ( 1)x n x n b L n s n= + + + + + 	 (20)	
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where	 x(n)	 and	 x(n+1)	 are	 the	 positions	 of	 the	 leader	 and	 follower	 vehicles	 respectively,	 b:	 standstill	
distance	between	 the	vehicles	and	L(n):	 length	of	 the	 leader	vehicle.	 smin(n+1):	 the	minimum	distance	
between	the	vehicles	given	by	

	 min ( 1) . ( 1)s n T V n+ = + 	 (21)	

where	v(n	+	1):	speed	of	the	follower	vehicle	and	T:	travel	time	of	the	minimum	distance.	 	

Newell	model	assumes	leader	and	follower	trajectories	are	linear	translations	of	one	another	in	time	and	
space	 [21].	 Newell’s	 model	 assumes	 follower	 will	 keep	 a	 minimum	 distance	 with	 the	 leader	 under	
congested	conditions.		

	 1( ) ( )n n n nx t x t dt -+ = - 	 (22)	

where	τn	and	dn	are	time	and	distance	translations,	respectively.	

v Calibration	methodology:	

Optimum	parameters	for	the	car	following	models	are	found	by	solving	an	optimization	problem.	Genetic	
algorithm	 is	used	as	 the	solving	method.	Genetic	algorithms	are	widely	used	 in	 solving	constraint	and	
unconstrained	optimization	problems	for	defined	cost	functions.	We	used	a	weighted	cost	function	where	
points	closer	 to	 the	end	points	 in	 the	gaps	have	more	effect	on	 the	overall	 cost.	Tri-cube	 (bell	 shape)	
weight	function	(Eq.	24)	is	selected	and	sum	of	the	difference	between	calibrated	distance	headway	(from	
models)	and	known	trajectory	points	headway	values	is	multiplied	with	the	corresponding	weight	based	
on	the	location	around	the	gap.	Cost	function	is	given	by	

	 ,mod ,
1

( )
N

i i el i trajectory
i

C w abs s s
=

= -å
	

(23)	

	where	N:	total	number	of	points	around	the	gap,	si,model	:	car	following	model	headway	at	point	I,		si,trajectory	
:	headway	of	known	data	point	i	and	wi	is	weight	for	point	i.	The	weight	for	each	point	i	is	calculated	by	

	
3 3 ( / ) 1(1 ( / ) )

( , )
( / ) 10i

d Ld L for
w d L

d Lfor
<ì -

= í ³î 	
(24)	

where	d	is	the	distance	from	the	edge	of	the	gap	and	L	is	the	length	of	before	and	after	gap	areas.	Figure.	
12	shows	these	areas	in	detail.		
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Figure	12.	Trajectory	gap	and	before-after	areas	

Max	weight	points	contribute	the	most	and	points	beyond	the	min	weight	points	are	disregarded	in	the	
method.	Points	between	min	and	max	weight	points	are	weighted	by	the	tri-cube	weight	function	in	Eq.	
24.	Figure	13	below	shows	the	result	of	this	locally	weighted	calibration.	The	discontinuity	at	the	end	of	
the	calibrated	gap	can	be	seen.			

 
Figure	13.	Result	of	calibration	

The	discontinuity	in	Figure	13	is	expected	as	the	car	following	models	use	the	beginning	of	the	gap	as	start	
point.	 We	 proposed	 a	 smooth	 transition	 algorithm	 to	 achieve	 continuous	 end	 points.	 Details	 of	 the	
algorithm	are	below.	

v Smooth	transition	algorithm:	

• Step	1:	Straight	lines	from	the	ending	edge	of	the	gap	are	drawn	to	each	estimated	point	starting	from	
the	 closer	 points.	 We	 used	 a	 threshold	 value	 of	 slope	 (speed)	 and	 the	 first	 line	 to	 meet	 the	
requirement	 is	 selected.	 Several	 lines	are	drawn	until	 a	 line	meets	 the	 requirement.	This	allows	a	
smooth	transition	at	that	part	of	the	trajectory.		
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• Step	2:	Reshaping	operation	is	applied	on	the	selected	straight	line	from	step	1.	This	operation	uses	a	
varying	ratio	between	the	car	following	model	value	and	the	straight-line	value	given	in	Eq	25.	 

	 [ ] . [ ] (1 ). [ ]stm n cfm n liney n w y n w y n= + - 	 (25)	

where	ystm[n]	is	the	smooth	transition	model	value,	ycfm[n]	is	car	following	model	value,	yline[n]	is	line	
value	and	wn	is	the	weight	at	point	n.		

 

 

Figure	14.	Straight	lines	drawn	in	the	gap	area	in	step	1	(left)	and	result	of	the	algorithm	(right)	

Result	of	the	algorithm	for	recovering	a	sample	gap	is	given	in	Figure	14.	This	method	is	applied	on	the	
gaps	created	on	our	dataset.	Gaps	are	created	with	random	length	between	5	and	15	seconds.	We	created	
112	gaps	in	NGSIM	and	24	gaps	in	the	LIDAR	data.	We	selected	before	and	after	gap	areas	(L)	of	5	seconds	
on	 both	 sides	 of	 the	 gap.	 This	 allows	 to	 capture	 intra-driver	 behavior	 before	 and	 after	 the	 gap.	 Our	
optimization	method	is	Genetic	algorithm	with	roulette	wheel	selection,	crossover	rate	0.7,	mutation	rate	
0.1,	 population	 20	 and	 50	 number	 of	 iterations.	 Root	mean	 square	 error	 (RMSE)	 and	mean	 absolute	
percent	error	(MAPE)	of	the	joint	datasets	are	given	in	Figure	15	below.		

  
Figure	15.	MAPE	and	RMSE	(meters)	for	completed	gaps	in	both	LIDAR	and	NGSIM	data	
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Table	3.	Error	Statistics	for	LIDAR	and	NGSIM	Data	

	

Car	following	models	

Pipes	 Gipps	 IDM	 Newell	

%	
MAPE	

RMSE	 %	
MAPE	

RMSE	 %	
MAPE	

RMSE	 %	
MAPE	

RMSE	

Min	 2.87	 0.48	 1.35	 0.22	 1.78	 0.34	 1.63	 0.29	
Max	 46.1	 8.71	 24.13	 5.41	 41.78	 13.67	 45.29	 14.36	

Average	 20.27	 3.63	 8.95	 1.75	 11.21	 2.26	 17.79	 3.65	
Median	 17.4	 3.29	 7.82	 1.42	 9.66	 1.68	 15.57	 2.66	
Standard	
diviation	 13.37	 2.12	 5.36	 1.15	 7.58	 2.04	 10.51	 2.99	

	

Additional	error	statistics	are	summarized	in	Table	3.	Gipps	and	IDM	yield	better	results	than	other	models	
for	MAPE	and	RMSE	measures.	From	Table	3,	Gipps	model	has	lower	standard	deviation	than	IDM,	so	it	
can	 provide	 more	 stable	 estimations.	 In	 this	 part,	 we	 investigated	 microscopic	 traffic	 models	 and	
estimated	 their	 parameters	 using	 a	 locally	 weighted	 calibration	method.	We	 applied	 this	method	 on	
recovering	missing	trajectory	data.	Full	trajectories	are	important	as	they	provide	valuable	information	
about	traffic	state.	As	a	 future	work,	we	plan	to	extend	our	method	to	work	on	multiple	vehicle	pairs	
around	our	data	collection	vehicle.			

	

Estimating traffic density from trajectories: 
Using	 the	 algorithms	 presented	 above,	 one	 can	 extract	 vehicle	 trajectories	 from	 LIDAR	 data.	 If	 a	
reasonably	 large	 number	 of	 vehicle	 are	 equipped,	 data	 from	 these	 vehicles	 could	 be	 integrated	 to	
estimate	traffic	density	or	other	parameters	for	a	given	time-space	region	of	interest.	Since	the	LIDAR	data	
collected	in	study	come	from	a	single	vehicle,	estimating	density	from	such	a	limited	data	would	not	be	
possible.	Instead,	NGSIM	data	are	employed	to	demonstrate	how	trajectories	of	some	“probe”	vehicles	
could	be	utilized	to	 infer	the	number	of	unobserved	vehicles	or	density.	 In	particular,	 traffic	density	 is	
estimated	 under	 congested	 traffic	 since	 vehicles	 interactions	 are	 more	 prevalent	 which	 makes	 the	
inference	 more	 feasible.	 As	 explained	 in	 [22],	 probe	 vehicle	 data	 under	 stop-go	 conditions	 can	 be	
extracted	to	predict	the	number	of	unobserved	vehicles	between	them.	For	this	purpose,	NGSIM	data	
trajectory	 data	 collected	 on	 I-80	 and	 US-101	 [17]	 are	 used.	 This	 dataset	 includes	 periods	 of	 heavy	
congestion	with	stop-and-go	shockwaves.	This	characteristic	is	used	to	estimate	number	of	unobserved	
vehicles	between	probe	vehicles.	A	subset	of	the	data	is	used	to	develop	and	train	the	model	and	the	rest	
is	used	for	testing.	Training	involves	estimating	mean	and	standard	deviation	for	the	probability	density	
functions	(pdfs)	of	gaps	between	probe	vehicles.	Queue	length	estimation	at	signalized	intersections	have	
been	studied	in	the	literature	with	statistical	[23,24]	or	shockwave	theory	[25-28].	This	work	provides	a	
simple	approach	and	proves	the	theory	that	traffic	flow	parameters	can	be	estimated	using	probe	vehicle	
data	with	a	good	accuracy	for	stop-and-go	traffic	situations.	This	work	will	be	extended	using	LIDAR	data	
as	a	future	project	where	probe	vehicles	and	LIDAR	equipped	vehicle	will	be	used	together.		
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v Data	Processing:	

An	example	of	trajectories	is	given	in	Figure	16.	Red	circles	indicate	the	points	at	which	vehicles	stop	and	
green	circles	indicate	the	points	where	vehicles	start	moving.		

	

Figure	16.	Sample	trajectories	and	five	stop-and-go	shockwaves	from	lane	4	of	I-80	

	Stop-and-go	points	are	obtained	using	the	following	steps:	

• Step1:	For	each	trajectory,	find	points	where	vehicle	speed	is	below	a	threshold	(e.g.,	0.1	fps)	and	
label	with	a	unique	stopID.	Add	these	stopIDs	to	a	set	𝒮.	

• Step2:	Find	the	stopID	with	the	longest	duration	in	𝒮	and	define	 𝑡O, 𝑥O 	and	 𝑡Q, 𝑥Q 	as	the	start	
and	end	t-s	coordinates	of	this	stopID,	respectively.	Search	between	 𝑡O − 𝜏, 𝑥O 	and	 𝑡Q + 𝜏, 𝑥Q ,	
where	𝜏	is	buffer	size	(e.g.,	5	sec).		

• Step3:	For	the	selected	trajectories	in	Step	2,	find	the	stop	points	(‘go’	points)	where	the	vehicle	
decelerates	(accelerates)	the	most.		

• Step4:	Remove	extracted	data	in	Step2	from	𝒮	and	go	back	to	Step2	until	𝒮	is	empty.		

Distance	headway	between	any	two	vehicles	is	defined	as,		

	 𝑥C,D
" = 𝑥C

" − 𝑥D
"			∀𝑖, 𝑗 ∈ 𝐼", 𝑖 < 𝑗	 (26)	

In	this	project,	the	main	problem	is	predicting	the	number	of	unobserved	vehicles	n	between	probe	
vehicles	i	and	j	based	on	the	distance	headway	𝑥C,D

" ,	where	n	is	defined	simply	as,	

	 𝑛 = 𝑗 − 𝑖	 (27)	

From	the	available	dataset,	2004	distance	different	headways	𝑥C,D
" 	are	extracted.	A	sample	dataset	is	given	

in	Table	4.		

 

 

 



24	
	

Table	4.	Sample	distance	headways	

Row	#	 n	 𝒙𝒊,𝒋𝒌 (ft.)	 Road	 Lane	

1	 1	 21.572	 US101	 1	

2	 10	 267.178	 US101	 2	

3	 4	 100.706	 I80	 4	

…	 …	 …	 …	 	

2004	 4	 110.538	 I80	 5	

	

v Prediction	Model	and	Training:	

In	this	study,	distance	headways	between	probe	vehicles	are	assumed	to	be	independent	and	follow	a	
Gaussian	probability	density	function	(pdf)	with	parameters	𝜃M = 𝑛𝜇, 𝑛𝜎F ;	and	𝜃E	represents	the	mean	
and	variance	of	the	Gaussian	pdf	when	n	=	1.	A	Naïve	Bayes	classifier	is	used	to	predict	n	given	the	distance	
headway.		

	 𝑛 = argmax
							L

𝑓 𝑥C,D" 𝜃L 							𝑚 = 1,2, …	 (28)	

where,	𝑛	is	the	predicted	n,	f	is	the	Gaussian	pdf,	𝜃L = (𝑚𝜇,𝑚𝜎F)	

Unknown	 parameters	 mean	 and	 variance	 of	 the	 distance	 headway	 between	 two	 consecutive	 probe	
vehicles	are	determined	with	both	a	supervised	and	unsupervised	method.		

Supervised	learning	method:	

In	this	method,	it	is	assumed	that	distance	headways	from	two	consecutive	probes	are	available.	The	main	
steps	as	applied	to	the	data	in	Table	4	are	as	follows:		

• Randomly	select	%50	of	the	data	with	n=1	from	Table	4	

• Estimate	𝜃E	(𝜇E, 𝜎EF)	where	𝜇E = 𝑎𝑣𝑔(𝑆)	and	𝜎EF = 𝑣𝑎𝑟(𝑆)	

	

Unsupervised	learning	method:	

For	 the	 unsupervised	 method,	 a	 subset	 of	 distance	 headways	 less	 than	 a	 predefined	 upper	 bound	
threshold	(UB)	are	selected	so	that	most	of	the	observations	with	n	≤	2	can	be	covered.	The	actual	labels	
(n)	need	not	be	known	in	the	unsupervised	method.	A	Gaussian	mixture	model	with	two	components	is	
then	fit	to	these	data.	UB	is	adjusted	by	the	following	steps	until	a	stable	value	is	found.	

1. Initialize	the	upper	bound	(UB)	for	𝑥C,D
" .		

2. Randomly	select	a	given	size	of	sample	(e.g.,	50%)	from	Table	4	where	𝑥C,D
" 	<	UB.		

3. A	 two-component	 Gaussian	 Mixture	 Model	 is	 fit	 with	 parameters	 𝜃F = 2𝜃E = (2𝜇E, 2	𝜎EF).	 A	
sample	fit	is	shown	in	Figure	17.		
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4. The	upper	bound	is	updated	to	be	three	standard	deviations	larger	than	the	second	mean:	𝑈𝐵 =
	2𝜇E + 3 2𝜎EF	

5. Steps	2-4	are	repeated	until	UB	converges.	UB	converges	between	10-20	steps.		

	
Figure	17.	A	two	component	Gaussian	mixture	model	to	fit	the	data	

v Results:	

Supervised	and	unsupervised	methods	are	 applied	on	 the	 test	data	 to	predict	unobserved	number	of	
vehicles	between	probe	vehicles	by	estimating	the	two	model	parameters	(𝜇E, 𝜎EF).	Results	are	in	Figure	
18	below.	Please	note	that	data	used	for	training	is	excluded	in	the	graphs.		

For	the	supervised	method,	50%	of	all	distance	headways	for	which	n	=	1	are	used	for	training	and	rest	is	
used	for	testing.	For	n	=	1,	there	are	a	total	of	230	samples	in	the	data.	Since	115	of	them	are	used	for	
model	training,	they	are	not	included	in	the	top	chart	of	Figure	18.	Hence,	the	115	samples	on	the	first	
bar.	For	the	unsupervised	method,	samples	are	selected	based	on	the	UB	criterion	as	discussed	before.	
Most	of	the	random	sample	for	training	in	this	case	comes	from	either	n	=	1	or	n	=	2	conditions	while	11	
data	points	(198-187=11)	are	from	n	=	3.	The	GMM	model	is	then	fit	to	this	mixed	sample	of	points	to	
estimate	the	model	parameters.	The	results	shown	in	Figure	18	are	for	the	remaining	data	points	(i.e.,	
training	 data	 not	 included).	 From	 Figure	 18,	 we	 can	 see	 that	 supervised	 and	 unsupervised	 methods	
performed	 similar.	 Horizontal	 axes	 show	 the	 unobserved	 number	 of	 vehicles	 between	 probes.	 The	
number	above	each	bar	shows	number	of	available	data	for	testing	corresponding	to	n.	The	numbers	in	
white	areas	represent	correct	prediction,	whereas	numbers	in	gray	areas	represent	under	predictions	(i.e.,	
𝑛 = 𝑛 − 1)	or	over	predictions	(i.e.,	𝑛 = 𝑛 + 1).	In	very	few	instances,	the	over/under-predictions	are	by	
±2,	which	are	indicated	by	red	shading.	The	Blue	lines	show	prediction	accuracy	which	is	calculated	by	
numbers	in	white	area	divided	by	the	corresponding	sample	size	(numbers	above	bars).		
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Figure	18.	Accuracy	of	the	supervised	and	unsupervised	learning	methods	applied	to	the	distance	headway	data.		

v Estimating	macroscopic	traffic	density:	

Traffic	density	is	calculated	by	dividing	the	prediction	𝑛	by	headway	distance	𝑥C,D
" 	which	is	𝑛/𝑥C,D

" .	Accuracy	
of	this	approach	is	computed	by	the	following	error	measure:	

	 𝜀 =
𝑛
𝑥 −

𝑛
𝑥

𝑛
𝑥

∗ 100	 (29)	

Where	subscripts	are	omitted	for	simplicity.	This	equation	can	be	written	in	a	simpler	way	by	

	 𝜀 =
𝑛 − 𝑛
𝑛

∗ 100	 (30)	

This	error	measure	 is	used	to	calculate	the	accuracy	of	 the	traffic	density	calculation.	Since	we	used	a	
random	a	 selection	 for	 training	and	 testing.	Each	model	 is	 trained	and	 tested	30	 times	 to	account	 for	
variations.	Figure	19	show	the	result	of	these	30	runs:	the	average	estimated,	actual	densities	and	the	
standard	deviation	e.	The	blue	line	shows	the	standard	deviation	of	e,	the	green	and	red	ones	show	the	
actual	and	estimated	average	densities,	respectively.	The	macroscopic	density	is	expected	to	be	high	due	
to	 the	data	coming	 from	stop-and-go	or	dense	 traffic	conditions	and	Figure	19	shows	the	same	result	
except	the	first	bin	where	headway	is	less	than	20	ft.	Standard	deviation	of	error	for	the	first	bin	is	zero	
since	unrealistic	small	headways	when	x<20	ft	results	in	both	n	and	𝑛	to	be	1.	For	headways	larger	than	



27	
	

20ft,	standard	deviation	of	error	starts	high	and	decreases	as	headway	or	n	increases.	While	accuracy	of	
predicting	n	decreases	with	increasing	n	in	Figure	18.		

	

	
Figure	19.	Accuracy	for	supervised	and	unsupervised	methods.	The	results	of	30	trials	are	aggregated	by	distance	headways	bins	

in	increments	of	20	ft.	

	

In	this	study,	number	of	vehicles	between	probe	vehicles	are	estimated	using	distance	information	
between	probe	vehicles.	Naïve	Bayes	model	with	Gaussian	pdfs	are	used	and	their	parameters	are	
estimated	with	a	supervised	and	unsupervised	method.	These	methods	are	tested	with	NGSIM	
trajectory	data	and	resulted	in	good	prediction	results	with	accuracy	of	±1	vehicle	almost	always.	Later,	
predicted	number	is	used	to	calculate	traffic	density	by	the	equation	30.	From	Figure	19,	we	can	see	that	
models	can	be	used	to	calculate	macroscopic	traffic	density.	Accuracy	increases	as	number	of	vehicles	or	
distance	headway	increases.	This	work	proposes	two	different	methods	for	traffic	flow	parameter	
estimation	from	probe	vehicle	trajectory.	This	work	will	be	extended	using	LIDAR	data.	
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6. Conclusions:	
In	this	project,	authors	developed	models	and	algorithms	for	traffic	flow	parameters	estimation	from	3D	
LIDAR	data	problem.	Authors	addressed	the	research	objectives	of	the	project:	LIDAR	data	is	collected	
under	different	conditions	on	urban	and	freeway	roads,	vehicles	are	classified	based	on	their	sizes,	
vehicles	are	tracked	and	their	trajectories	are	extracted	and	microscopic	and	macroscopic	traffic	flow	
parameters	are	calculated	from	vehicle	trajectories.	We	successfully	applied	our	methods	on	the	data	
we	collected	with	our	vehicle	on	urban	and	freeway	roads.	Detected	vehicles	are	classified	based	on	
their	geometry	and	then	they	are	processed	by	a	tracking	system	consisting	of	Kalman	Filter	with	
Hungarian	Algorithm	for	data	association.	Using	the	tracking	information,	we	constructed	vehicle	
trajectories	which	have	valuable	information	about	the	traffic	state	along	the	data	collection	path.	Then,	
collected	vehicle	trajectories	are	used	in	a	car-following	models	to	predict	missing	data	points	in	
trajectories.	This	method	gave	very	satisfactory	results	when	applied	on	known	trajectories	from	LIDAR	
and	NGSIM	datasets.	It	is	also	demonstrated	that	traffic	density	can	be	estimated	accurately	under	
congested	conditions	using	a	small	sample	of	probe	vehicles	in	the	traffic	stream.		
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